Thread: Science Science is Cool....
View Single Post
Old 10-02-2012, 10:37 PM   #281
Fish Fish is offline
Ain't no relax!
 
Fish's Avatar
 

Join Date: Sep 2005
Casino cash: $2668919
Freaking replicators! Seriously.

Tea... Earl Grey... HOT!

How to Make Almost Anything
The Digital Fabrication Revolution
By Neil Gershenfeld
September 27, 2012

A new digital revolution is coming, this time in fabrication. It draws on the same insights that led to the earlier digitizations of communication and computation, but now what is being programmed is the physical world rather than the virtual one. Digital fabrication will allow individuals to design and produce tangible objects on demand, wherever and whenever they need them. Widespread access to these technologies will challenge traditional models of business, aid, and education.

The roots of the revolution date back to 1952, when researchers at the Massachusetts Institute of Technology (MIT) wired an early digital computer to a milling machine, creating the first numerically controlled machine tool. By using a computer program instead of a machinist to turn the screws that moved the metal stock, the researchers were able to produce aircraft components with shapes that were more complex than could be made by hand. From that first revolving end mill, all sorts of cutting tools have been mounted on computer-controlled platforms, including jets of water carrying abrasives that can cut through hard materials, lasers that can quickly carve fine features, and slender electrically charged wires that can make long thin cuts.

Today, numerically controlled machines touch almost every commercial product, whether directly (producing everything from laptop cases to jet engines) or indirectly (producing the tools that mold and stamp mass-produced goods). And yet all these modern descendants of the first numerically controlled machine tool share its original limitation: they can cut, but they cannot reach internal structures. This means, for example, that the axle of a wheel must be manufactured separately from the bearing it passes through.

[...]

Labs like mine are now developing 3-D assemblers (rather than printers) that can build structures in the same way as the ribosome. The assemblers will be able to both add and remove parts from a discrete set. One of the assemblers we are developing works with components that are a bit bigger than amino acids, cluster of atoms about ten nanometers long (an amino acid is around one nanometer long). These can have properties that amino acids cannot, such as being good electrical conductors or magnets.(HOLY SHIT COOL!) The goal is to use the nanoassembler to build nanostructures, such as 3-D integrated circuits. Another assembler we are developing uses parts on the scale of microns to millimeters. We would like this machine to make the electronic circuit boards that the 3-D integrated circuits go on. Yet another assembler we are developing uses parts on the scale of centimeters, to make larger structures, such as aircraft components and even whole aircraft that will be lighter, stronger, and more capable than today’s planes — think a jumbo jet that can flap its wings.

A key difference between existing 3-D printers and these assemblers is that the assemblers will be able to create complete functional systems in a single process. They will be able to integrate fixed and moving mechanical structures, sensors and actuators, and electronics. Even more important is what the assemblers don’t create: trash. Trash is a concept that applies only to materials that don’t contain enough information to be reusable. All the matter on the forest floor is recycled again and again. Likewise, a product assembled from digital materials need not be thrown out when it becomes obsolete. It can simply be disassembled and the parts reconstructed into something new.

The most interesting thing that an assembler can assemble is itself. For now, they are being made out of the same kinds of components as are used in rapid prototyping machines. Eventually, however, the goal is for them to be able to make all their own parts.

[More info at link....]
__________________
Posts: 47,320
Fish is obviously part of the inner Circle.Fish is obviously part of the inner Circle.Fish is obviously part of the inner Circle.Fish is obviously part of the inner Circle.Fish is obviously part of the inner Circle.Fish is obviously part of the inner Circle.Fish is obviously part of the inner Circle.Fish is obviously part of the inner Circle.Fish is obviously part of the inner Circle.Fish is obviously part of the inner Circle.Fish is obviously part of the inner Circle.
    Reply With Quote